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Abstract 

Road construction events are a necessary part of keeping road infrastructure in good 

condition but can pose significant safety problems when implemented. Transportation authorities 

in NYC seek a better understanding of the type, severity, and extent of mobility impacts 

associated with work zones. This project proposes using a k-means clustering approach to predict 

the probability of a vehicle collision occurring in the proximity of a road construction event (i.e 

work zone). The proposed clustering method is applied to over 20,000 construction and 

emergency construction events of relatively short duration in New York City to identify types of 

work zones that may present greater safety risks. This methodology builds upon the existing 

body of research by utilizing only publicly available datasets and by applying the methodology 

to roads and highways in the five boroughs of New York City. The results of this project are in 

service of enabling practitioners to employ appropriate mitigation strategies during project 

programming, design, and in the development of effective transportation management plans. 

This project is part of the Center for Urban Science and Progress capstone process with capstone 

sponsor HDR and a consortium of transportation authorities in the New York City Metro Area.    

Keywords:  Work zones, vehicle collisions, clustering, collision probability. 
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Introduction 

Temporary work zones for roadway constructions have the potential to significantly 

impact mobility and safety for all roadway users. An increase in the number of people using 

local streets because of work zone diversion plans may increase the likelihood of crashes, 

including crashes involving vulnerable populations (e.g., cyclists, seniors, and individuals with 

disabilities).  This project brings together disparate data sets to allow for a more comprehensive 

overview of collisions and work zones. Our aim is to help agencies optimize construction 

schedules, improve safety and mobility, and adjust travel diversion plans when schedule overlap 

is unavoidable. We asked, can we use characteristics of streets and roadway construction 

events to predict collision probability in future work zones? 

The first task of this project was to produce a pipeline for wrangling disparate spatial data 

sets – street networks, collisions, and construction events – that allowed for a high-resolution and 

accurate mapping of the different geometries (Figure 10). Since the data sets are created from 

different agencies with different formats and scales, it was essential to join these data sets before 

modeling any analytical algorithms. The outcome was a merged data set and a dashboard of 

crashes and construction events mapped to the unified street network. With a final data set of 

more than 20,000 short-term work zones in New York City, we moved to the second task of 

implementing a clustering algorithm to group similar work zones into cohorts based on their 

characteristics. A crash probability was calculated for each cluster. These clusters were used to 

predict the likelihood of a crash happening in a future work zone with similar characteristics and 

produce a predictive web-based application for future work zones.  
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Literature Review 

According to (Hébert, et al., 2019) the emergence of the concept of public data and the 

advancement in big data analytics have resulted in a surge in traffic accidents research. Machine 

learning has played a significant role in recent industry research to derive insights into the 

probabilities of a vehicle collisions and the characteristics of roadways that cause them. In the 

public sector, the American Association of State Highway and Transportation Officials      

published a predictive model to estimate the effect of applying geometric design and traffic 

control features on the average crash frequency (AASHTO, 2010; 2014). Crash modification 

factors (CMFs) – site-derived multiplicative factors used to compute the expected number of 

crashes after implementing a given counter measure – are used to adjust the model’s result.  

(Hébert, et al., 2019) used machine learning algorithms to infer the causes and predict the 

probabilities of hourly crashes on a specific road segment in the city of Montreal. They merged 

the Montreal vehicle collision data set, historical climate data set, and national road network data 

set and implemented the Balanced Random Forest algorithm. The model detected 85% of 

crashes, and identified temperature, visibility, the hour, the day, and historic crash count to be the 

most important predictors. 

More specific to this project, extensive research has been done on the increased risk of 

vehicle collisions in the presence of road construction. (Yang, et al., 2014) modeled highway 

crash risk for relatively short duration work zones and found that unlike long-term work zones 

that have many crashes, work zones with relatively short durations usually have no crash or one 

crash during the entire active work period. Yang el al. also found a rare-event logistic regression 

to be the most appropriate model to predict the likelihood of a crash in a short-term work zone. 

For this study, we adopted a similar approach of analyzing short term work events.  
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Our methodology also builds upon previous research that has utilized clustering to 

identify different cohorts of work zones by applying it to construction events in New York City. 

(Tay, et al., 2018) used large amounts of historical data about work zones to predict the 

likelihood of a crash in a future work zones with similar features. Researchers used 

characteristics about historical work zones such as time of work, construction type, and work 

zone duration to cluster work zones into cohorts of similar characteristics. Within these cohorts, 

researchers calculated collision rates so that the probability of a crash in a future work zone could 

be calculated given its cluster assignment. 

Research involving work zones, however, is prone to a wide array of errors. (Ozbay, et 

al., 2013) writes about the lack of work zone data and how data derived from existing sources are 

usually subject to several uncertainties and measurement error. For example, research using work 

zone duration as a feature in its analysis is likely to have significant errors since the exact 

starting or end date of a specific work zone may not be readily available and most transportation 

authorities do not report on the times where actual work is being completed on the site. 

Similarly, work zone length is subject to significant error. Work zone lengths can vary according 

to the progress of the project and the length information for each stage is not usually available 

from project plans. These measurement errors – that we are cognizant of while designing our 

research methodology – point to transportation authorities’ need to improve data collection 

around work zones and work zone collisions. 
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Data  

Data describing work zones (WZs) and collisions were collected from the New York 

State Department of Transportation, and the New York City Police Department, respectively. 

Data from these two sources were merged with the LION data set from the Department of City 

Planning (DCP). The study focuses on WZs with a duration less than 24 hours, which account 

for more than 80% of all the WZs observed during 2016-2019. The data set constructed for this 

study includes 20,717 WZs (Figure 1) and 3,727 WZ collisions. In most cases, a WZ occurred on 

a road with three lanes (Figure 2). The average duration of a work zone is five hours (Figure 3). 

Around 3.8% of the construction work was done during the peak-periods (7-9 AM and 4-6 PM). 

Moreover, about 33% of the work was done in daylight (Figure 3), and WZs were typically on 

weekdays (Figure 4).  

The observed 3,601 WZ collisions occurred on a small subset (14.5%) of all the recorded 

WZs. Among the 3,005 WZs with collisions, 81.5% witnessed one collision and 96% witnessed 

two or less collisions (Figure 5). The highest number of WZ collisions took place on Fridays, 

while far fewer occurred on Saturdays and Sundays, which could be explained by the lower 

number of WZs active on weekends (Figure 4). The seasonal distribution of WZ collisions 

implies that most of the collisions took place in the summer which is not surprising if compared 

the WZ activity per season (Figure 4). Following this exploratory data analysis, twelve attributes 

were selected as possible input variables (Table 1) based on their ability to influence the 

occurrence of a collision. The correlation between a subset of these variables and the number of 

WZ collisions is provided in (Figure 6), and indicates relatively weak correlation between 

attributes.  
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Figure 1: Heatmap showing locations of work zones that took place in New York City during 

2016-2019. Higher density of work zones can be seen in yellow. We notice a higher number of 

work zones in Manhattan. We also notice a concentration of work zones on highway roads.  

 

Figure 2: A bar plot of number of lanes of a roadway on which construction occurred shows that 

more than 8000 work zones occurred on a roadway with three lanes. 
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Figure 3: The distribution of WZ duration in hours (left) and the split in active hours between 

day/night and peak/off-peak. The figures show an average total WZ duration of 5hrs. 67% of the 

work is done at night and most of the work (96%) is done during off peak hours. Note: peak 

hours (7-9 AM and 4-6 PM). 

 

Figure 4: The number of WZs and WZ collisions per days of the week (left) and seasons of the 

year (right). The majority of  WZs and collisions happen on a weekday and during the summer. 
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Figure 5: Map showing location of WZs with collisions. We notice the prevalence of the yellow 

color representing a low crash count (<2). Very few locations show in orange and red indicating 

a low number of work zones with more than two collisions. 

 

Figure 6: Correlation between input variables considered for clustering (table: 1) and number of 

WZ collisions. The darker red and blue colors denote the more positively and negatively the 

attributes are correlated, respectively. White color indicates no correlation.  
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Methodology 

Spatial Data Wrangling 

SharedStreets Referencing System 

Spatial data produced by various entities use different geometric representations (Figure 

11). The LION data provided a detailed database of the city’s streets, but the structure of the 

streets was not ideal for joining disparate data sets since segment lengths did not correspond with 

real world block lengths (Figure 12). Additionally, the locations of crashes and WZs did not 

align perfectly with the street network (Figure 13). SharedStreets – a tool that creates a shared 

reference system for disparate street networks – provided a solution to connect the data (Figure 

14). Each record in the LION, collisions and WZ data was assigned a ‘SharedStreets geometry 

id’. Based on this id, characteristics of streets, collisions, and work zones were linked.  

In some cases where one SharedStreets segment was matched to multiple LION 

segments, the latter were aggregated by taking the most frequent value of an attribute (Figure 

15). Intersections between two adjacent roadbeds were represented as a short segment line 

instead of an intersection point (Figure 16). Consequently, crashes happening at those 

intersections were erroneously mapped as segment crashes. To distinguish between intersection 

and segment crashes, segments less than 100ft separating roadbeds were identified and replaced 

by node points from the LION dataset. This separation of segment and intersection crashes was 

important for better future WZ analysis because these two types of crashes represented different 

safety scenarios.  

Roadway Construction Events / Work Zones 

Without access to a database of historical work zones events, two publicly available data 

sets on roadway construction events were investigated, the “511NY Traffic Events” and the 
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“Street Closures due to Construction”. Each record in the 511 data provided information on the 

location (latitude / longitude) and active work duration of a roadway construction event. The 

final dataset had missing values for posted speed, street width, and number of lanes. Instead of 

dropping these records, missing values were imputed using the mode value for segments of the 

same roadway type. To determine which crashes are considered in proximity to a WZ, a buffer 

was created around this segment (Figure 17). The average WZ length (~900ft) was determined as 

a suitable distance for the buffer radius. Therefore, collisions that happened within a radius of 

900ft from the segment were counted as WZ collisions. 

Previous research has shown the importance of work zone length in predicting collisions 

(Ozturk, et al., 2015). However, the 511 data did not provide any information on the length of the 

WZs, so we had to analyze the Street Closures data for that. Each record in the Street Closures 

data provided information on a LION segment closure event due to different construction 

purposes, yet it lacked information on the exact active working hours on this segment. Instead, it 

only provided data on the overall duration of a work permit. Processing the Street Closures data 

led to the grouping of multiple segment closures spatially and temporally to create WZs. We then 

attempted to join the Street Closures WZs we created which provided length information to the 

511 data which provided accurate active work durations. The process was able to successfully 

join 2632 WZs only.  

Work Zone Clustering & Collision Probability Prediction  

This objective of the clustering process was to create clusters based on the engineered 

historical work zones data set to predict the collision probability for future ones (Figure 7). To 

improve the performance of the clustering algorithm, categorical variables were modeled using 

their binary counterparts, and the peak and day duration of a WZ were divided by its overall 
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duration to get the proportion of the WZ that took place during peak and daytime. The off-peak 

and night durations were removed from the model for redundancy to reach a final list of input 

variables for clustering (Table 2). Data was normalized and split into train and test sets. The train 

set was used to fit a K-means clustering algorithm, first, on the larger data set that did not include 

the length attribute, and second, on a smaller data set that included length attribute.  

The collision probability was then calculated by dividing the number of WZs witnessing 

a crash by the total number of WZs for each cluster. Accordingly, each WZ in the test set was 

assigned to the closest cluster (from the train set) based on its features to compute its predicted 

probability of a collision. To evaluate the model, the actual collision probabilities for each cluster 

in the test set were then calculated. The symmetric mean absolute percentage error (SMAPE) 

was used to quantify the error between the actual and predicted probabilities across clusters. A 

smaller SMPAE value would mean a better prediction power. To measure the prediction power a 

base line SMAPE value was calculated for clustering using the roadway type attribute only. The 

assumption was that clustering using only one attribute would have the least prediction power, 

and any increase in the prediction power (i.e. decrease in SMAPE) later would be considered an 

enhancement to the model.  

 

Figure 7: Graphical description of the clustering methodology 
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Results 

Clustering & Prediction 

The silhouette analysis was used to choose an optimal value for the number of clusters. 

The silhouette plot (Figure 8) shows that the number of clusters of value of 3, 5 , 6 and 7 are a 

bad pick due to the presence of clusters with below average silhouette scores. Silhouette analysis 

is more ambivalent in deciding between 2 and 4. Four clusters were eventually chosen since the 

average silhouette score was higher. While some clusters had similar mode values of an attribute, 

most of them show variant values (Table 3). The spatial distribution of the different clusters 

shows that cluster 2 of work zones seem to be occurring on secondary and tertiary streets while 

cluster 1, 3, 4 occurred on primary streets (Figure 9).  

The predicted probability (using the train set) of a crash happening in each of the four 

clusters is 16%, 13%, 14%, and 16% respectively. These probabilities were compared to the 

actual probabilities of each cluster in the test set and SMAPE was measured at 3.8%. If 

compared to the base error calculated using roadway type only it showed a 2.6 % decrease.  On 

the other hand, clustering using the smaller data set (i.e. with length) resulted in an almost zero 

percent error compared to a 29% base error using the roadway type only.  

Dashboard & Web Application 

An interactive dashboard3 was designed to serve as a tool for transportation authorities to 

explore the public safety risks associated with historical work events as well as the historical 

crash rates on all New York City roads and intersections (Figure 18). A predictive web 

application4 was also built off the results of the clustering methodology to inform the planning of 

multiple new construction events simultaneously. It would aid decision making to avoid 

situations with high crash risk.  



 14 

 

 

Figure 8: A silhouette plot for K-means clustering used to choose an optimal value for the 

number of clusters. A higher score means that the sample is well matched to its own cluster. 

 

Figure 9:Spatial Distribution of the four clusters. 
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Conclusion 

This research intended to provide transportation agencies with an understanding of work 

zones crash risk by proposing a clustering approach to predict the probability of a collision 

occurring in the proximity of a roadway construction event. This research adds to similar 

existing body of literature that used clustering to predict work zones’ effects on public safety. 

One major improvement to the methodology developed by (Tay, et al., 2018) was deriving work 

zone length by using available permit data. Additionally, unlike past research that focused on 

only highways, this research was expanded to include both highway and local roads throughout 

NYC.  

 The results of the k-means clustering algorithm provided 4 distinct clusters of work zones 

with varying probabilities of a crash occurring. The final clustering model was built into a 

predictive web tool that allows for the application of the findings to future or hypothetical work 

zones and serves as a proof of concept for this methodology. The predictive power of these 

cluster assignments could be improved with further refinement of parameter weights that were 

not implemented in the scope of this project. 

The process of this research created a pipeline of work zones’ characteristics and 

collisions data resulted in several improvements to wrangling disparate datasets together for 

future use by transportation authorities. The results of this data wrangling are also available for 

exploration through an interactive dashboard. It also highlighted some pitfalls in the data 

collection process around construction work zones in New York City. To gain better insights, it 

would be useful to have the length of a work zone as well as the hours in which work was taking 

place publicly available. With access to improved datasets, the methodology used in this research 

could provide more accurate results.  
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Appendix 

Footnotes 

1In addition to this, 900 ft also represent the width of the standard Manhattan block. 

2Many reasons could be behind this low number. Adding to the fact that some 511 events 

might not require a permit, some also might not require full closure and therefore will not be 

listed – according to the Street Closures data description the data identifies locations where a 

street is subject to a full closure. Besides, the process of merging and creating WZs from the 

Street Closures and eventually linking those to the 511 data is prone to error and may have 

influenced the result. 

3 https://workzone-collision-analysis.github.io/capstone/dashboard/ 

4 https://workzone-collision-predict.herokuapp.com/ 

https://workzone-collision-analysis.github.io/capstone/dashboard/
https://workzone-collision-predict.herokuapp.com/
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Tables 

Table 1:Input variables considered for WZ clustering 

Season of the year when the WZ was active Roadway type 

Day of the week when the WZ was opened Street width 

Duration of the WZ during the peak hours  Total number of lanes 

Duration of the WZ during off-peak hours Number of travel lanes 

Duration of the WZ during daylight Number of parking lanes 

Duration of the WZ during night Speed 

 

Table 2: Input variables used for WZ clustering 

Variable Description Columns 

Season Season of year 4 

Roadway type Type of road 5 

Weekend 1 for Saturday or Sunday, 0 otherwise 2 

Street Width Maximum width of the street 1 

Peak Peak duration / overall duration 1 

Day Day duration / overall duration 1 

Speed Roadway posted speed 1 

Length Total length of segments in feet 1 

 

Table 3: Mode values of attributes in each cluster 

Attribute Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Season Fall Summer  Winter Summer 

Roadway type Highway Street Highway Highway 

Weekend Most work zones occurred on weekdays 

Street Width 30 25 40 40 

Peak Off-Peak Off-peak Off-peak Off-Peak 

Day Night Night Night Night 

Speed 50 25 50 50 

Collision 

Probability 

16%  13% 14% 16% 
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Figures 

 

 

Figure 10: Flow Chart of Tasks
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Figure 11. A visualization of disparate spatial data sets showing how different street 

representations (i.e. LION, OpenStreetMap, & NYS Roadway Inventory) do not match perfectly. 

It also shows how the NYPD vehicle collisions do not snap accurately on the network. 

 

Figure 12: SharedStreets API: Unifying LION street network with SharedStreets/OpenStreetMap 

geometry. In the left visualization you can see how a block face is segmented by several nodes 

that do not represent reality. The image to the right shows how using SharedStreets we were able 

to unify a block face into one segment while keeping the old LION IDs 
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Figure 13: SharedStreets API: Mapping vehicle collisions on SharedStreets geometry. A 

visualization showing old crash points (red) and a new list of projected crash points (blue) that 

fall accurately on the network snapped using SharedStreets. 

 

 

Figure 14: SharedStreets referencing system connects two street networks with a common ID. 
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Figure 15: A demonstration of the aggregation process used to group multiple LION segments 

that were assigned to the same SharedStreets id. The most frequent value of an attribute was 

used to describe the segment. 

 

Figure 16. A map showing misclassified crashes. The circled locations represent crashes that 

were misclassified as segment crashes when they actually occurred at an intersection. 
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Figure 17: An illustration of the methodology used for counting work zone related crashes. Each 

color represents a temporal range (i.e. active work zone duration) of a 511 event.   

 

 

Figure 18: A screen shot of the dashboard that can be visited here: https://workzone-collision-

analysis.github.io/capstone/dashboard/.  

 

https://workzone-collision-analysis.github.io/capstone/dashboard/
https://workzone-collision-analysis.github.io/capstone/dashboard/

